报告题目:On the sums of polynomial units in the ring of residue classes modulo $n$
报告人:洪绍方 教授 四川大学
报告时间:2025年7月23日 10:00
报告地点:正新楼306
报告摘要:
Let $f(x)\in\mathbb{Z}[x]$ be a non-constant polynomial. Let $n, k$ and $c$ be integers such that $n\ge 1$ and $k\ge 2$. An integer $a$ is called an $f$-unit in the ring $\mathbb{Z}_n$ of residue classes modulo $n$ if $\gcd(f(a),n)=1$. In this paper, we use the principle of cross-classification to derive an explicit formula for the number ${\mathcal N}_{k,f,c}(n)$ of solutions $(x_1,...,x_k)$ of the congruence $x_1+...+x_k\equiv c\pmod n$ with all $x_i$ being $f$-units in the ring $\mathbb{Z}_n$. It extends a result of Anand, Chattopadhyay and Roy. Furthermore, we arrive at more explicit formula for ${\mathcal N}_{k,f,c}(n)$ when $f(x)$ is linear or quadratic. This generalizes the formula of Brauer obtained in 1926 and that of Yang and Zhao gotten in 2017.
报告人简介:
洪绍方是四川大学脱衣舞
教授、博士生导师。他是教育部新世纪优秀人才,也是四川省学术和技术带头人。
洪绍方主要研究数论、算术几何和编码理论。他先后主持国家自然科学基金和教育部博士点基金等10多个纵向项目。在学术成果方面,已在国内外30多种重要数学期刊上发表论文100多篇,其中SCI收录论文80多篇。他还担任国际数学SCI期刊《AIMS Mathematics》和《Journal of Mathematics》等的编委。