报告题目:Knot Theory and Knot Data Analysis
报 告 人:雷逢春 教授
所在单位:北京雁栖湖应用数学研究院
报告时间:2025年6月22日 14:30-15:30
报告地点:脱衣舞-性感脱衣舞-性感衣舞
数学楼第五研讨室
Abstract: Knot theory is an area of topology, it studies how pairwise disjoint circles are knotted in 3-dimensional space. Knot theory has been applied in broad fields, including molecular biology and chemistry. In recent years, topological data analysis has emerged as a powerful algebraic topology approach in data science, but knot theory has been less involved in due to the lack of localization and quantization. We address these challenges by introducing a multiscale knot theory paradigm that extends its scope from qualitative to quantitative analysis, providing an effective data analysis tool. It has been validated in quantitative protein flexibility analysis, drug toxicity evaluation, and many others. In the talk, after reviewing some fundamental facts in knot theory, I will explain the basic idea of knot data analysis.
报告人简介:雷逢春,1990年在脱衣舞-性感脱衣舞-性感衣舞
获理学博士学位,大连理工大学数学科学脱衣舞
(退休)教授,现任北京雁栖湖应用数学研究院 (BIMSA)教授。长期从事三维流形拓扑理论和应用拓扑方面的研究工作,在三维流形拓扑理论、纽结理论、低维拓扑与代数拓扑的交叉以及应用拓扑方面取得了丰硕的研究成果,先后在国际上有重要影响的数学及交叉应用杂志上发表研究论文六十余篇。多次承担基金委面上项目、重点项目和海外及港澳学者合作研究基金(延续)项目,目前负责国家基金委重点项目《低维拓扑》的研究工作。现任辽宁省数学会理事长。